Sains
Malaysiana 54(4)(2025): 1113-1126
http://doi.org/10.17576/jsm-2025-5404-12
Subcritical Water Extraction (SWE) and
Ultrasonic-Assisted Extraction (UAE) of Bioactive Compounds from Morinda citrifolia:
Comparative Evaluation of Process Efficiency
(Pengekstrakan Air Subkritikal (SWE)
dan Pengekstrakan Berbantukan Ultrasonik (UAE) Sebatian Bioaktif daripada Morinda
citrifolia: Penilaian Perbandingan Kecekapan Proses)
HUSNA ABDUL
SOMAT1, INTAN SAFURA SAIPUL ANWAR1, WAN AIDA WAN MUSTAPHA1,2,
SITI MAZLINA MUSTAPA KAMAL3 & NURFATIMAH MOHD THANI1,2,*
1Department of Food Sciences, Faculty
of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Innovation Centre for Confectionery
Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Department of Process and Food
Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang,
Selangor, Malaysia
Diterima: 13 Ogos 2024/ Diserahkan: 16 Disember 2024
Abstract
Morinda citrifolia has garnered significant interest
from researchers in the food and pharmaceutical industries. Despite this
interest, research on extracting its beneficial components using green
technologies remains limited. This study aims to investigate the effect of two extraction
techniques namely subcritical water extraction (SWE) and ultrasonic-assisted
extraction (UAE) on the total phenolics content and antioxidant activity of M. citrifolia leaf extracts using
response surface methodology (RSM). A three-level factorial central composite
design (CCD) was applied to determine the effect of three independent variables
for each method of UAE (X1: citric acid concentration, X2:
extraction time, X3: ultrasonic amplitude) and SWE (X1:
operating temperature, X2: extraction time, X3: solid
loading) on three dependent variables (Y1: total phenolic content
(TPC), Y2: free-radical scavenging activity (DPPH), Y3: ferric
reducing antioxidant activity (FRAP)). The optimum value of TPC and DPPH by UAE
are 48.25 mg GAE/g and 22.59% inhibition, respectively, which are lower than
the optimal values obtained by SWE method, with respective values of 64.96 mg
GAE/g and 80.75% inhibition. However, the FRAP value possessed by UAE was
higher compared to SWE, with respective values of 29.63 mg GAE/g and 11.33 mg
GAE/g. The results indicate that extraction temperature (p<0.05) was the
most significant factor that enhances phenolic yield and antioxidant activity
in MC leaves using SWE, while citric acid concentration notably
influences UAE extracts the most. The UAE demonstrated higher process
efficiency compared to SWE. However, due to the use of samples with
significantly different sizes in the evaluation, further analysis is needed to
make a definitive comparison of process efficiency between the two methods.
Keywords:
Antioxidant activity; hydrothermal processing; medicinal plant; Morinda; total
phenolic content
Abstrak
Morinda citrifolia telah berjaya menarik minat para
penyelidik dalam industri makanan dan farmaseutikal kerana potensi pengaplikasiannya
dalam bidang perubatan. Walau bagaimanapun, penyelidikan tentang pengekstrakan
komponen yang bermanfaat daripada tumbuhan ini menggunakan teknologi hijau
masih terhad. Penyelidikan ini bertujuan untuk mengkaji kesan dua teknik
pengekstrakan yang berbeza, iaitu pengekstrakan air subkritikal (SWE) dan pengekstrakan
dengan bantuan ultrasonik (UAE) terhadap kandungan total fenol dan aktiviti
antioksidan ekstrak daun M. citrifolia menggunakan kaedah rangsangan permukaan (RSM). Satu reka bentuk komposit
putaran tengah (CCD) tiga aras telah digunakan untuk menentukan kesan tiga
pemboleh ubah bebas bagi setiap kaedah UAE (X1: kepekatan asid
sitrik, X2: masa pengekstrakan, X3: amplitud ultrasonik)
dan SWE (X1: suhu pengekstrakan, X2: masa pengekstrakan,
X3: beban pepejal sampel) terhadap pemboleh ubah berbalas (Y1:
kandungan total fenol (TPC), Y2: aktiviti penangkapan radikal bebas
(DPPH), Y3: aktiviti pengurangan ferik antioksidan (FRAP)). Nilai
optimum TPC dan DPPH bagi UAE masing-masing ialah 48.25 mg GAE/g dan 22.59%
perencatan, lebih rendah berbanding nilai optimum yang diperoleh dengan kaedah
SWE, masing-masing sebanyak 64.96 mg GAE/g dan 80.75% perencatan. Walau
bagaimanapun, nilai FRAP oleh UAE adalah lebih tinggi berbanding SWE, dengan
nilai masing-masing 29.63 mg GAE/g dan 11.33 mg GAE/g. Hasil kajian menunjukkan
bahawa suhu pengekstrakan (p<0.05) adalah faktor yang paling signifikan yang
meningkatkan hasil fenol dan aktiviti antioksidan dalam daun MC menggunakan
SWE, manakala kepekatan asid sitrik adalah faktor paling berpengaruh untuk
ekstrak UAE. UAE menunjukkan kecekapan proses yang lebih tinggi berbanding SWE.
Walau bagaimanapun, disebabkan penggunaan sampel dengan saiz yang berbeza
secara signifikan dalam penilaian tersebut, analisis lanjut diperlukan untuk
membuat perbandingan yang lebih muktamad mengenai kecekapan proses antara
kedua-dua kaedah.
Kata
kunci: Aktiviti antioksidan; jumlah kandungan fenol; pemprosesan hidrotermal; Morinda;
tumbuhan perubatan
RUJUKAN
Akowuah,
G.A., Ismail, Z., Norhayati, I. & Sadikun, A. 2005. The effects of
different extraction solvents of varying polarities on polyphenols of Orthosiphon
stamineus and evaluation of the free radical-scavenging activity. Food
Chemistry 93(2): 311-317. https://doi.org/10.1016/j.foodchem.2004.09.028
Almeida,
É.S., de Oliveira, D. & Hotza, D. 2019. Properties and applications of Morinda
citrifolia (Noni): A review. Comprehensive Reviews in Food Science and
Food Safety 18(4): 883-909. https://doi.org/10.1111/1541-4337.12456
Ampofo,
J. & Ngadi, M. 2022. Ultrasound-assisted processing: Science, technology
and challenges for the plant-based protein industry. Ultrasonics
Sonochemistry 84: 105955. https://doi.org/10.1016/j.ultsonch.2022.105955
Asari,
N.A., Ab. Halim, S., Mohd Thani, N. & Hashim, H. 2021. Potensi rizom serai Acheh
(Elettariopsis smithiae) sebagai punca tumbuhan antioksida: Kesan suhu
dan masa pengekstrakan terhadap antioksida, perubahan warna dan sebatian meruap. Sains Malaysiana 51(8): 2681-2693. https://doi.org/10.17576/jsm-2022-5108-26
Belwal,
T., Ezzat, S.M., Rastrelli, L., Bhatt, I.D., Daglia, M., Baldi, A., Devkota,
H.P., Orhan, I.E., Patra, J.K., Das, G., Anandharamakrishnan, C., Gomez-Gomez,
L., Nabavi, S.F., Nabavi, S.M. & Atanasov, A.G. 2018. A critical analysis
of extraction techniques used for botanicals: Trends, priorities, industrial
uses and optimization strategies. TrAC Trends in Analytical Chemistry 100: 82-102. https://doi.org/10.1016/j.trac.2017.12.018
Che-Galicia,
G., Váquiro-Herrera, H.A., Sampieri, Á. & Corona-Jiménez, E. 2020.
Ultrasound-assisted extraction of phenolic compounds from avocado leaves (Persea
americana Mill. var. Drymifolia): Optimization and modeling. International
Journal of Chemical Reactor Engineering 18(7): 20200023. https://doi.org/10.1515/ijcre-2020-0023
Cheng,
Y., Xue, F., Yu, S., Du, S. & Yang, Y. 2021. Subcritical water extraction
of natural products. Molecules 26(13): 4004.
https://doi.org/10.3390/molecules26134004
Essien,
S., Young, B. & Baroutian, S. 2020. Subcritical water extraction for
selective recovery of phenolic bioactives from Kānuka leaves. The
Journal of Supercritical Fluids 158: 104721.
https://doi.org/10.1016/j.supflu.2019.104721
Fontes,
R.F., Andrade, J.K.S., Rajan, M. & Narain, N. 2023. Chemical characterization
of different parts of noni (Morinda citrifolia) fruit and its
freeze-dried pulp powder with emphasis on its bioactive compounds and
antioxidant activities. Food Science and Technology (Brazil) 43(5):
e103722. https://doi.org/10.1590/fst.103722
Gonçalves
Rodrigues, L.G., Mazzutti, S., Vitali, L., Micke, G.A. & Ferreira, S.R.S.
2019. Recovery of bioactive phenolic compounds from papaya seeds agroindustrial
residue using subcritical water extraction. Biocatalysis and Agricultural
Biotechnology 22: 101367. https://doi.org/10.1016/j.bcab.2019.101367
Hoo,
D.Y., Low, Z.L., Low, D.Y.S., Tang, S.Y., Manickam, S., Tan, K.W. & Ban,
Z.H. 2022. Ultrasonic cavitation: An effective cleaner and greener
intensification technology in the extraction and surface modification of
nanocellulose. Ultrasonics Sonochemistry 90: 106176.
https://doi.org/10.1016/j.ultsonch.2022.106176
Jamaludin,
R., Kim, D.S., Salleh, L.M. & Lim, S.B. 2021. Kinetic study of subcritical
water extraction of scopoletin, alizarin, and rutin from Morinda citrifolia. Foods 10(10): 2260. https://doi.org/10.3390/foods10102260
Ko,
M.J., Nam, H.H. & Chung, M.S. 2020. Subcritical water extraction of
bioactive compounds from Orostachys japonicus A. Berger (Crassulaceae). Scientific
Reports 10(1): 10890. https://doi.org/10.1038/s41598-020-67508-2
Kumar,
R., Methven, L. & Oruna-Concha, M.J. 2023. A comparative study of ethanol
and citric acid solutions for extracting betalains and total phenolic content
from freeze-dried beetroot powder. Molecules 28(17): 6405.
https://doi.org/10.3390/molecules28176405
Lima,
D., dos Santos, A., Celestino, A., Sampaio, N., Baldez, J., Melecchi, M.,
Bjerk, T., Krause, L. & Caramão, E.B. 2018. Ultrasonic extracts of Morinda
citrifolia L.: Characterization of volatile compounds by gas
chromatography-mass spectrometry. Journal of the Brazilian Chemical Society 30(1):
132-139. https://doi.org/10.21577/0103-5053.20180162
Lohani,
M., Majrashi, M., Govindarajulu, M., Patel, M., Ramesh, S., Bhattacharya, D.,
Joshi, S., Fadan, M., Nadar, R., Darien, B., Maurice, D.V., Kemppainen, B.
& Dhanasekaran, M. 2019. Immunomodulatory actions of a Polynesian herb Noni
(Morinda citrifolia) and its clinical applications. Complementary
Therapies in Medicine 47: 102206. https://doi.org/10.1016/j.ctim.2019.102206
Mohd
Zin, Z., Mohamad, N., Kah Hui, C., Majid, N.I. & Zainol, M.K. 2021. Effect
of acidified ethanol on antioxidant properties of Morinda citrifolia leaf
extract and its catechin derivatives. Current Research in Nutrition and Food
Science Journal 9(1): 172-183. https://doi.org/10.12944/CRNFSJ.9.1.17
Mokhtar,
N., Nordin, M.F.M. & Morad, N.A. 2018. Total phenolic content, total
flavonoid content and radical scavenging activity from Zingiber zerumbet Rhizome using subcritical water extraction. International Journal of
Engineering 31(8): 1421-1429. https://doi.org/10.5829/ije.2018.31.08b.34
Munir,
M.T., Kheirkhah, H., Baroutian, S., Quek, S.Y. & Young, B.R. 2018.
Subcritical water extraction of bioactive compounds from waste onion skin. Journal
of Cleaner Production 183: 487-494.
https://doi.org/10.1016/j.jclepro.2018.02.166
Nagalingam,
M., Rajeshkumar, S., Balu, S.K., Tharani, M. & Arunachalam, K. 2022.
Anticancer and antioxidant activity of Morinda citrifolia leaf mediated
selenium nanoparticles. Journal of Nanomaterials 2022: 2155772.
https://doi.org/10.1155/2022/2155772
Nuengchamnong,
N., Saesong, T., Ingkaninan, K. & Wittaya-areekul, S. 2023. Antioxidant activity
and chemical constituents identification by LC-MS/MS in bio-fermented fruit
drink of Morinda citrifolia L. Trends in Sciences 20(4): 6498.
https://doi.org/10.48048/tis.2023.6498
Nurfatimah Mohd Thani, Siti Mazlina Mustapa Kamal,
Farah Saleena Taip, Alifdai Sulaiman, Rozita Omar & Mohd Hafizz Wondi.
2022. Risk assessment of subcritical water hydrolysis (SWH) system for
sugar recovery using failure modes and effects analysis (FMEA) methods. Sains
Malaysiana 51(10): 3333-3345.
Pak-Dek,
M.S., Osman, A., Gooda Sahib, N., Saari, N., Markom, M., Hamid, A.A. &
Anwar, F. 2011. Effects of extraction techniques on phenolic components and
antioxidant activity of Mengkudu (Morinda citrifolia L.) leaf extracts. Journal
of Medicinal Plants Research 5(20): 5050-5057.
http://www.academicjournals.org/JMPR
Şahin,
S., Pekel, A.G. & Toprakçı, İ. 2022. Sonication-assisted
extraction of Hibiscus sabdariffa for the polyphenol’s recovery: Application
of a specially designed deep eutectic solvent. Biomass Conversion and
Biorefinery 12(11): 4959-4969. https://doi.org/10.1007/s13399-020-00837-4
Tasfiyati,
A.N., Antika, L.D., Dewi, R.T., Septama, A.W., Sabarudin, A. & Ernawati, T.
2022. An experimental design approach for the optimization of scopoletin
extraction from Morinda citrifolia L. using accelerated solvent
extraction. Talanta 238: 123010.
https://doi.org/10.1016/j.talanta.2021.123010
Vo,
T.P., Pham, T.V., Tran, T.N.H., Vo, L.T.V., Vu, T.T., Pham, N.D. & Nguyen,
D.Q. 2023. Ultrasonic-assisted and microwave-assisted extraction of phenolics
and terpenoids from Abelmoschus sagittifolius (Kurz) Merr roots using
natural deep eutectic solvents. ACS Omega 8(32): 29704-29716.
https://doi.org/10.1021/acsomega.3c03929
Wang,
Y., Liu, Y. & Hu, Y. 2014. Optimization of polysaccharides extraction from Trametes
robiniophila and its antioxidant activities. Carbohydrate Polymers 111: 324-332. https://doi.org/10.1016/j.carbpol.2014.03.083
Wu,
H., Li, C., Li, Z., Liu, R., Zhang, A., Xiao, Z., Ma, L., Li, J. & Deng, S.
2018. Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions. Fuel Processing Technology 174: 88-94. https://doi.org/10.1016/j.fuproc.2018.02.014
Zhang,
J., Wen, C., Zhang, H., Duan, Y. & Ma, H. 2020. Recent advances in the
extraction of bioactive compounds with subcritical water: A review. Trends
in Food Science & Technology 95: 183-195.
https://doi.org/10.1016/j.tifs.2019.11.018
Zhang,
Q.W., Lin, L.G. & Ye, W.C. 2018. Techniques for extraction and isolation of
natural products: A comprehensive review. Chinese Medicine 13: 20.
https://doi.org/10.1186/s13020-018-0177-x
Zhao,
T., Luo, Y., Zhang, X., Zhang, W., Qu, H., Mao, G., Zou, Y., Wang, W., Li, Q.,
Chen, Y., Feng, W., Yang, L. & Wu, X. 2019. Subcritical water extraction of
bioactive compounds from Radix Puerariae and optimization study using
response surface methodology. Chemical Engineering Communications 206(9):
1218-1227. https://doi.org/10.1080/00986445.2018.1555529
Zhu,
H., Zhang, J., Li, C., Liu, S. & Wang, L. 2020. Morinda citrifolia L. leaves extracts obtained by traditional and eco-friendly extraction
solvents: Relation between phenolic compositions and biological properties by
multivariate analysis. Industrial Crops and Products 153: 112586.
https://doi.org/10.1016/j.indcrop.2020.112586
*Pengarang
untuk surat-menyurat; email: nurfatimah@ukm.edu.my
|